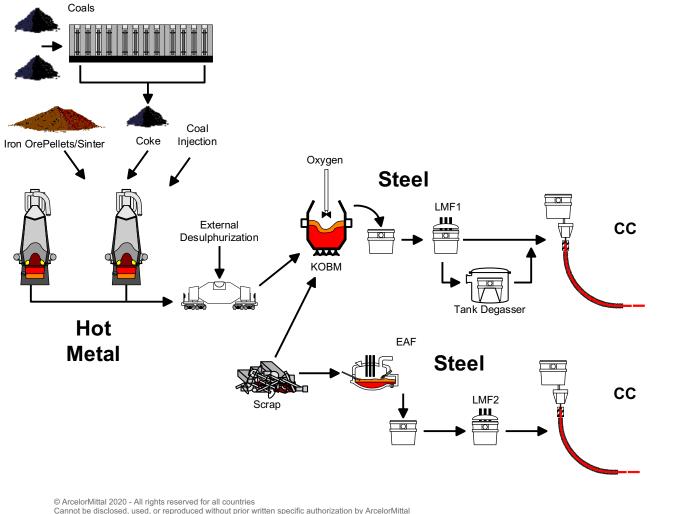


Future Opportunities to Utilize Biocarbon for Steel Production

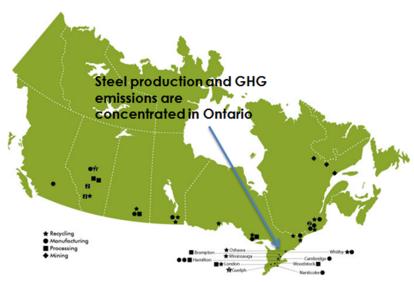

Ted Todoschuk Programme Leader ArcelorMittal Dofasco Global R&D CCRA Board Chairman

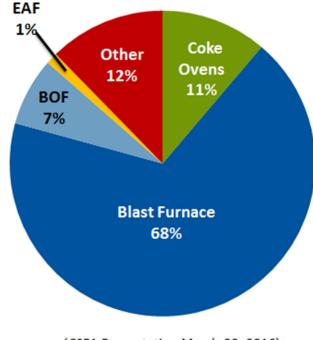
The right formula for the steels of the future

September 1, 2020

Overview

Steel industry is either BF-BOF route or DRI/Scrap – EAF route

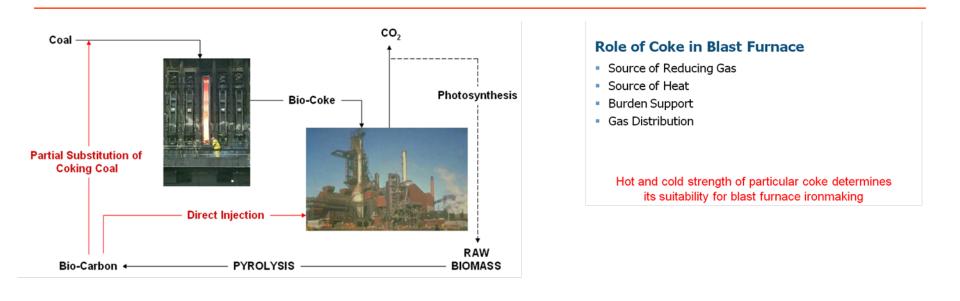

ArcelorMittal


Page 2

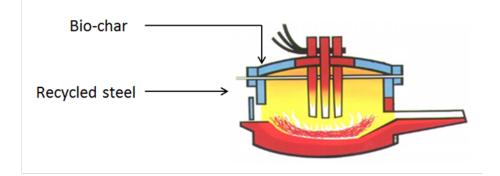
Cannot be disclosed, used, or reproduced without prior written specific authorization by ArcelorMittal CONFIDENTIAL - Privileged Information - ArcelorMittal proprietary information

Canadian Overview

- Integrated:
 - Blast Furnace Iron: 9 Mt
 - Coke consumption: ~4 Mt
 - CO₂ emission: ~14 Mt
- EAF:
 - EAF Iron: 6 Mt
 - CO₂: ~ 1 Mt

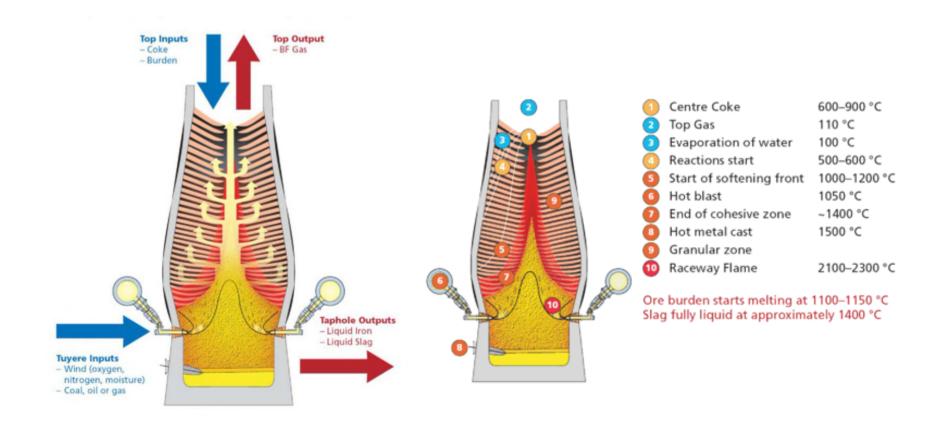


(CSPA Presentation March 30, 2016)



© ArcelorMittal 2020 - All rights reserved for all countries Cannot be disclosed, used, or reproduced without prior written specific authorization by ArcelorMittal CONFIDENTIAL - Privileged Information - ArcelorMittal proprietary information

What can we do to replace fossil fuel carbon?



- Coal replacement in coal blend which makes coke for BF
- Nut coke replacement
- Coal replacement for PCI applications
- · Fossil carbon replacement in EAF

Blast Furnace – A counter current reactor

Biomass carbon compared to fossil fuel carbon

(% in injectant)	Coal	Eucalyptus	Switchgrass	Bio-Oil	Charcoal
Ash	11.21	0.62	5.76	0.00	3.52
→ C	77.71	49.85	47.27	43.21	86.88
N	1.18	0.06	0.51	0.14	0.43
→ 0	4.64	43.50	41.59	48.80	6.82
н	4.24	5.86	5.31	7.73	2.30
S	0.68	0.01	0.10	0.03	0.05

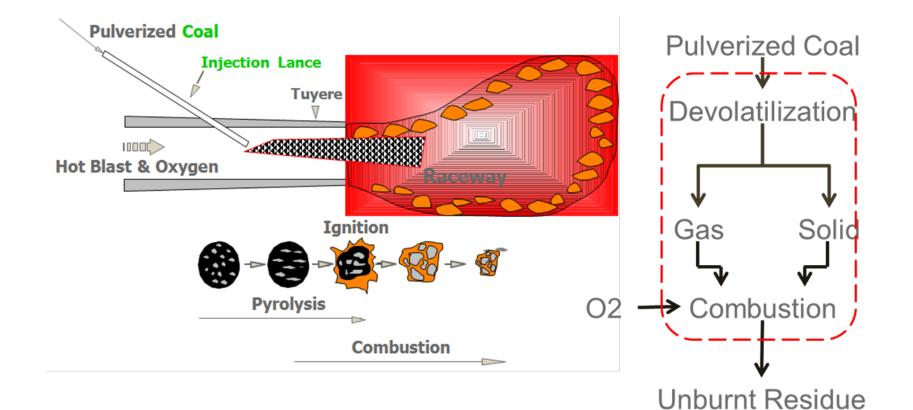
Ash

Composition

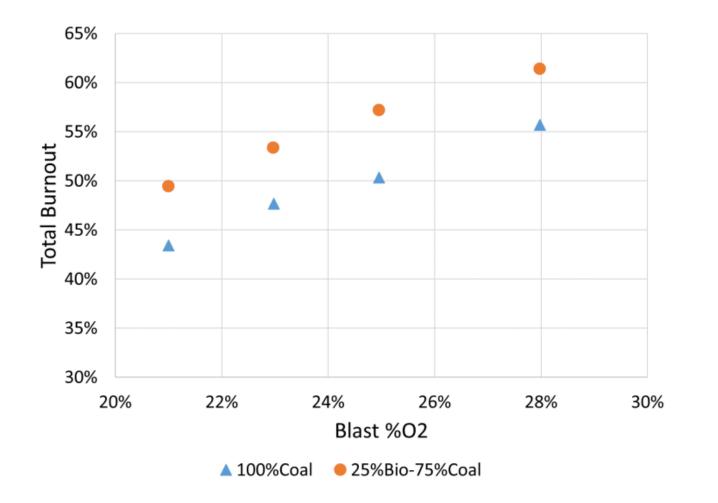
(% ash)	Coal	Eucalyptus	Switchgrass	Bio-Oil	Charcoal
Fe_2O_3	4.84	0.00	0.40	N/A	2.47
→ CaO	1.85	26.50	4.80	N/A	45.50
MgO	0.62	7.30	2.60	N/A	5.29
SiO ₂	60.14	17.80	69.90	N/A	11.18
Al_2O_3	28.42	7.90	0.40	N/A	2.78
\rightarrow P ₂ O ₅	1.13	29.10	2.60	N/A	3.20
K ₂ O	1.24	7.20	15.00	N/A	13.29
→ Na ₂ O	0.10	5.00	0.10	N/A	1.67
TiO_2	1.65	0.00	0.10	N/A	0.20

Elemental Composition is Critical to Iron and Steelmaking Products

© ArcelorMittal 2020 - All rights reserved for all countries Cannot be disclosed, used, or reproduced without prior written specific authorization by ArcelorMittal CONFIDENTIAL - Privileged Information - ArcelorMittal proprietary information

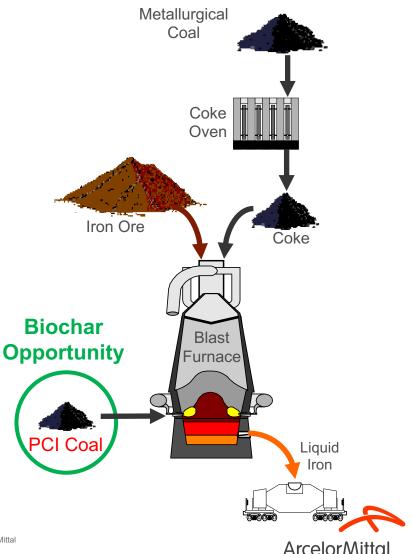

		Coal		Bio-char		
						Hydrothermal
		PCI	Fast Pyrolysis	Slow Pyrolysis	Torrefaction	Carbonization
Proximate	Ash	7.89	9.8	2.18	1.18	0.05
	VM	36.2	4.92	15.71	50.47	51.74
	FC	55.91	85.27	82.12	48.35	48.21
Ultimate	С	77.5	86	87.2	67	71.6
	н	5.15	0.95	2.63	4.45	4.85
	N	1.71	1.27	0.57	0.19	0.18
	S	0.78	0	0.05	0	0.0054
	0	6.98	2.01	7.4	27.2	23.4
Ash	SiO2	52.29	54.95	2.38	7.41	2.38
Chemistry	AI2O3	29.41	0.6	0.48	2.08	0.48
	Fe2O3	6.55	0.72	0.97	3.4	0.97
	CaO	3.25	15.99	61.67	37.17	61.67
	MgO	0.95	9.88	7.28	5.97	7.28
	P2O5	0.117	4.98	4.13	1.99	4.13
	Na2O	0.26	0.2	1.76	0.7	1.76
	K2O	1.64	7.45	8.12	15.59	8.12

Biocarbon usage in steel sector


Application	Material	Requirements	Typical	Biocarbon
Cokemaking	Coal	Ability to swell and condense into coke when heated to 1000°C	Use LV, MV and HV coals Blend 3-5 coals to a blend VM of 25%-30%	 Inert during cokemaking so lack of bonding High in oxygen – not good for bonding and swelling Residuals K, Na, Ca cause poor hot strength in carbon Biocarbon <5% still is not acceptable in resulting coke Not so much a cokemaking issue, but a resulting coke issue
BF	Coke	50% of BF volume Solid material inside BF Cold and hot strength Supports counter current reactor Chemical and physical targets	Used at 300-350 kg/thm	 Residuals K, Na, Ca cause poor hot strength in carbon K, Na hard to remove from BF so limited loading Cold and hot strength compromised
	PCI Coal	HHV – 30 MJ/kg Low residuals P, Na, K, Cl Typically HV coal and LV coal	Used at 150-200 kg/thm	 80% min carbon, Ash<5%, VM 15%-20% High in oxygen Can be too soft for grinding Residual loading – Na, K, P will limit usage
	Nut coke	Typically 25 x 6 mm Added to iron ore burden as sacrificial coke to protect large coke Comes from coke screening	Used at 25-50 kg/thm	 Can briquette into right size and shape High reactivity can be a plus Residual loading might be an issue but usage is low
EAF	Nut coke Breeze Anthracite	Used to allow the slag to foam to create a heat blanket	3.5 kg/t	 Residuals might be an issue Inability to wet and foam Environmental issues with dust generation

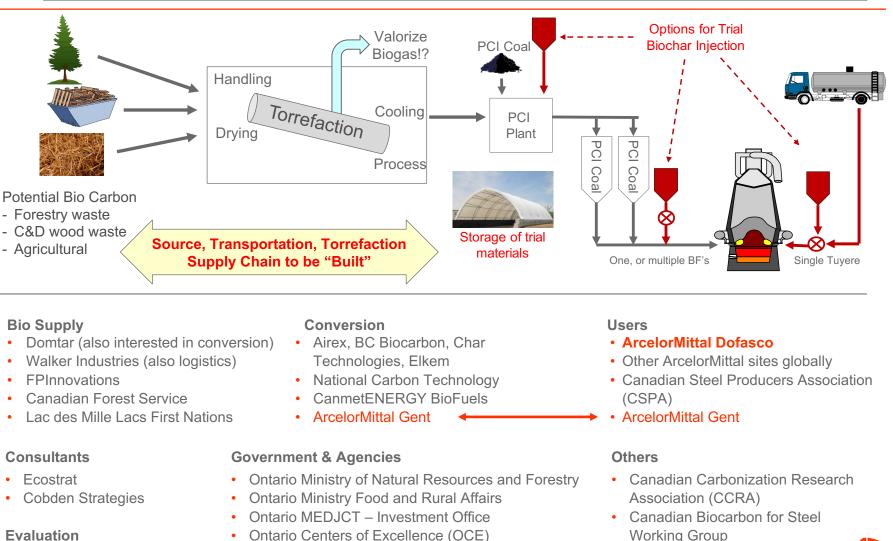
PCI Replacement and burnout

AM Dofasco Trials for PCI injection


• A blast furnace needs carbon to reduce iron oxide;

 $2 \ \text{Fe}_2\text{O}_3 + 3 \ \text{C} \rightarrow 4 \ \text{Fe} + 3 \ \text{CO}_2$

- Coke requires physical properties
- PCI (pulverized coal injection) mostly chemical carbon


Therefore, easier to replace PCI with bio-based carbon

- Initial goal to replace ~10% PCI coal (40,000 tpy) with biochar carbon (~120,000 tpy CO₂ reduction)
- Use existing drying and grinding facilities

AM Dofasco Trials for PCI injection

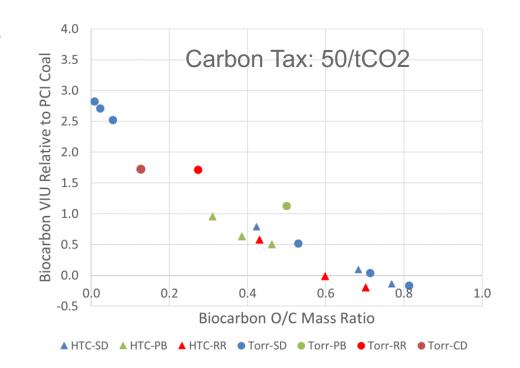
Have built and developed network for biocarbon within Canada

- Ontario Centers of Excellence (OCE)
- CanmetENERGY Met Labs Centre for res @ ArcelorMittal 2020 All rights reserved for all count without or Centre for Research & Innovation in the Bioeconomy

ArcelorMitta

Universities

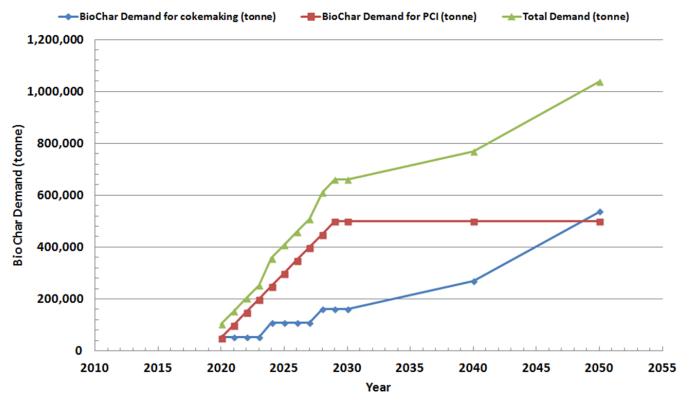
Cannot be disclosed, used, or reproduced without prior written specific authorization by ArcelorMittal CONFIDENTIAL - Privileged Information - ArcelorMittal proprietary information


VIU

Biocarbon Injection

- Affect raw materials input (coke,
- 02, etc.
- Affect operating cost
- Decrease GHG emission
- Saving in emission cost

Overall economic impact VIU


- Sensitive to carbon tax
- Depends on chemical composition of biocarbon
- Affect by pyrolysis technology and conditions

Biocarbon Usage in the Steel

- Substitution of fossil fuel by renewable biocarbon
- Incorporate biocarbon in existing facilities to avoid capital investment
- Goal if 25% GHG reduction

Orcelor/Mittal 2020 - All rights reserved for all countries Cannot be disclosed, used, or reproduced without prior written specific authorization by Arcelor/Mittal CONFIDENTIAL - Privileged Information - Arcelor/Mittal proprietary information

Biocarbon Usage in the Steel Potential

- Substitution of fossil fuel by renewable biocarbon
- Incorporate biocarbon in existing facilities to avoid capital investment
- Goal of 25% GHG reduction

Goal	Mitigation Impact	Anticipate d Technical Challenge	Development Priority
100% replacement of pulverized coal injection in blast furnace ironmaking	High	Low	1
100% replacement of fossil carbon input in EAF steelmaking	Low	Medium	2
100% replacement of small coke by bio-pellet	Low	High	3
10% substitution of coal in cokemaking	Low	High	4

