6. Use a table of values to sketch the graph of each polynomial function.

a)
$$f(x) = x^3 - 7x + 6$$

The equation represents an odd-degree polynomial function. The leading coefficient is positive, so as $x \to -\infty$, the graph falls and as $x \to \infty$, the graph rises. The constant term is 6, so the *y*-intercept is 6.

CONTRACTOR CONTRACTOR CONTRACTOR	
X	f(x)
-3	0
-2	12
-1	12
0	6
1	0
2	0
3	12

b)
$$g(x) = -x^4 + 5x^2 - 4$$

The equation represents an even-degree polynomial function. The leading coefficient is negative, so the graph opens down. The constant term is -4, so the y-intercept is -4.

X	g(x)
-3	-40
-2	0
-1	0
0	-4
1	0
2	0
3	-40

TEACHER NOTE

Achievement Indicator

Question 6 addresses Al 12.6: Sketch, with or without technology, the graph of a polynomial function. **7.** Use intercepts to sketch the graph of each polynomial function.

a)
$$f(x) = 2x^3 + 3x^2 - 2x$$

Factor.

$$f(x) = x(2x^2 + 3x - 2)$$

$$f(x) = x(x + 2)(2x - 1)$$

Determine the zeros of f(x). Let f(x) = 0.

$$0 = x(x + 2)(2x - 1)$$

The zeros are:
$$0, -2, \frac{1}{2}$$

So, the x-intercepts of the graph are: $0, -2, \frac{1}{2}$

The equation has degree 3, so it is an odd-degree polynomial function. The leading coefficient is positive, so as $x \to -\infty$, the graph falls and as $x \to \infty$, the graph rises.

The constant term is 0, so the y-intercept is 0.

b)
$$h(x) = 2x^4 + 7x^3 + 4x^2 - 7x - 6$$

Factor the polynomial. Use the factor theorem.

The factors of the constant term, -6, are: 1, -1, 2, -2, 3, -3, 6, -6Use mental math to substitute x = 1, then x = -1 in h(x) to determine that both x - 1 and x + 1 are factors.

Divide by x - 1.

So, $2x^4 + 7x^3 + 4x^2 - 7x - 6 = (x - 1)(2x^3 + 9x^2 + 13x + 6)$ Divide $2x^3 + 9x^2 + 13x + 6$ by x + 1.

So,
$$2x^4 + 7x^3 + 4x^2 - 7x - 6 = (x - 1)(x + 1)(2x^2 + 7x + 6)$$

Factor the trinomial: $2x^2 + 7x + 6 = (2x + 3)(x + 2)$

So,
$$2x^4 + 7x^3 + 4x^2 - 7x - 6 = (x - 1)(x + 1)(2x + 3)(x + 2)$$

Determine the zeros of h(x). Let h(x) = 0.

$$0 = (x - 1)(x + 1)(2x + 3)(x + 2)$$

The zeros are: 1, -1, -1.5, -2

So, the x-intercepts of the graph are:
$$1, -1, -1.5, -2$$

The equation has degree 4, so it is an even-degree polynomial function. The leading coefficient is positive, so the graph opens up. The constant term is -6, so the *y*-intercept is -6.

TEACHER NOTE

Achievement Indicators

Question 7 addresses AI 11.2: Divide a polynomial expression by a binomial expression of the form x - a, $a \in I$, using long division or synthetic division. AI 11.5: Explain and apply the factor theorem to express a polynomial expression as a product of factors. AI 12.5: Explain how the multiplicity of a zero of a polynomial function affects the graph. AI 12.6: Sketch, with or without technology, the

graph of a polynomial

function.