

Long division can be used to divide a polynomial by a binomial. Since division by zero is not possible, assume that the divisor is never 0.

To divide $x^2 + 2x + 5$ by x - 1:

Divide
$$x^2$$
 by x .

 $x + 3$ Divide $3x$ by x .

 $x - 1$ Divide $3x$ by x .

 $x - 1$ Divide $3x + 5$ Divide $3x + 5$ Divide $3x + 5$ Divide $3x + 5$ Multiply the divisor, $x - 1$, by x , then subtract.

 $x - 1$ Divide x^2 by x .

 $x - 1$ Divide $x - 1$ Divide x Divide

So, the quotient is x + 3 and the remainder is 8.

Before dividing, write the polynomial and the binomial divisor in descending order.

Example 1 Dividing a Polynomial by a Binomial

Divide: $-x + 3x^3 - 6 + 2x^2$ by x + 2

SOLUTION

Write the polynomial in descending order: $3x^3 + 2x^2 - x - 6$ Use long division to divide.

So, the quotient is $3x^2 - 4x + 7$ and the remainder is -20.

TEACHER NOTE

DI: Extending Thinking

Have students consider the meaning of the remainder 8 when $x^2 + 2x + 5$ is divided by x - 1. The remainder can be written as $\frac{8}{x - 1}$. Illustrate this concept using a numerical example from *Get Started*:

$$2748 \div 13 = 211 \frac{5}{13}$$

TEACHER NOTE

In this example of long division, and in the guided *Examples* that follow, the subtraction is indicated with a subtraction sign and brackets. As students become more familiar with the process, they should be able to subtract without using signs and brackets.

Check Your Understanding

1. Divide:
$$2x^3 + 5 - 2x + 3x^2$$
 by $x - 1$

Write:
$$(2x^3 + 3x^2 - 2x + 5) \div (x - 1)$$

Divide.

$$\begin{array}{r}
 2x^2 + 5x + 3 \\
 x - 1)2x^3 + 3x^2 - 2x + 5 \\
 \underline{2x^3 - 2x^2} \\
 5x^2 - 2x \\
 \underline{5x^2 - 5x} \\
 3x + 5 \\
 \underline{3x - 3} \\
 \end{array}$$

So, the quotient is $2x^2 + 5x + 3$ and the remainder is 8.

TEACHER NOTE

In *Check Your Understanding*, the subtraction signs and brackets have been omitted because of space restrictions.