Chemistry 12 UNIT 4 ACIDS AND BASES

PACKAGE \#5

$K_{a} K_{b}=K_{w}$

Proof:
$\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$

Recall, at $25^{\circ} C$:

$\mathrm{Kw}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]=10^{-7} \mathrm{M}$
$\mathrm{Kw}=\left(10^{-7}\right)\left(10^{-7}\right)=10^{-14}$
Consider the dissociation of any acid:

$$
\begin{aligned}
& \mathrm{HX}+\underset{\mathrm{H}_{2} \mathrm{O}}{\mathrm{Ha}} \underset{\mathrm{Ha} \mathrm{O}^{+}+\mathrm{X}^{-}}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{X}^{-}\right]} \\
& {[\mathrm{HX}]}
\end{aligned}
$$

Consider the reaction of a basic anion with water:
$\mathrm{X}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{HX}+\mathrm{OH}^{-}$
$\mathrm{Kb}=[\mathrm{HX}]\left[\mathrm{OH}^{-}\right]$
[X^{-}]
$\mathrm{KaKb}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{X}^{-}\right][\mathrm{HX}]\left[\mathrm{OH}^{-}\right]$
[HX] [X`]
$\mathrm{KaKb}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=\mathrm{Kw}$
at $25^{\circ} \mathrm{C} \quad \mathrm{KaKb}=10^{-14}$
USE $\mathrm{KaKb}=\mathrm{Kw}$ to solve for Kb given only Ka
The acid and base in this equation will be conjugate acid-base pairs
example: The Ka for $\mathrm{NH}_{4}{ }^{+}$is 5.6×10^{-10}. What is the Kb for NH_{3} ?

$$
\begin{aligned}
& \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \quad \mathrm{NH}^{+}+\mathrm{OH}^{-} \\
& \mathrm{Kb}\left(\mathrm{NH}_{3}\right)=\frac{\mathrm{Kw}}{\mathrm{Ka}\left(\mathrm{NH}^{+}\right)} \quad=\underline{10^{-14}}=1.8 \times 10^{-5}
\end{aligned}
$$

pH of solutions containing an ion

which can act as an acid and an ion which can act as a base
$\mathrm{NH}_{4} \mathrm{CH}_{3} \mathbf{C O O}$ (s)
acidic or basic?
$\mathrm{NH}_{4} \mathrm{CH}_{3} \mathrm{COO}(\mathrm{s}) \rightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$

- Consider $\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})$:
$\left.\mathrm{NH}_{4}{ }^{(} \mathrm{aq}\right)+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \geq \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
$\mathrm{Ka}\left(\mathrm{NH}_{4}{ }^{+}\right)=5.6 \times 10^{-10}$
- Consider $\mathrm{CH}_{3 \mathrm{COO}}{ }^{-}(\mathrm{aq})$:
$\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})=\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
$\mathrm{Kb}\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)=\quad \frac{\mathrm{Kw}}{\mathrm{Ka}(\mathrm{CH} 3 \mathrm{COOH})}=\underline{10^{-14}} \frac{1.8 \times 10^{-5}}{=} 5.6 \times 10^{-10}$
Since $K a=K b$ the $p H=7.0$ (neutral)

If $\mathbf{K a}>\mathbf{K b}$ then the solution would be acidic
pH <7
If $\mathbf{K a}<\mathbf{K b}$ then the solution would be basic
$\mathbf{p H}>7$

$\mathrm{K}_{\mathrm{a}} \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}}$

SAMPLE CALCULATIONS

1. Complete the following chart:
ACID
Ka
BASE
Kb

HBr
$\mathrm{HSO}_{4}{ }^{-}$
HNO_{2}
$\mathrm{H}_{2} \mathrm{CO}_{3}$

NH4 ${ }^{+}$

HS
2. Consider a solution containing $1.0 \mathrm{M} \mathrm{CN}^{-}(\mathrm{aq})$. Find its pH .

$$
\mathrm{CN}^{-}(\mathrm{aq}) \quad+\mathrm{HOH}(\mathrm{l}) \quad \rightleftarrows \quad \mathrm{HCN}(\mathrm{aq}) \quad+\quad \mathrm{OH}^{-}(\mathrm{aq})
$$

3. Consider a solution containing $1.0 \mathrm{M} \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$. Find its pH and $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$.

$$
\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{HOH}(\mathrm{l}) \rightleftarrows \mathrm{HCH}_{3} \mathrm{COO}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

4. Consider a 1.0 M solution with $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2.4 \times 10^{-12}$. Calculate the Kb .
$? ?(\mathrm{aq})+\mathrm{HOH}(\mathrm{l}) \quad \rightleftarrows \quad ? ?(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
5. Consider a 0.25 M solution with $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=6.3 \times 10^{-11}$. Calculate the Kb .
$? ?(\mathrm{aq})+\mathrm{HOH}(\mathrm{l}) \quad \rightleftarrows \quad$?? $(\mathrm{aq}) \quad+\mathrm{OH}^{-}(\mathrm{aq})$

$\mathrm{K}_{\mathrm{a}} \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}}$

SAMPLE CALCULATIONS

1. Complete the following chart:

Ka	ACID	BASE	Kb
~infinity	HBr	$\mathrm{Br}-$	0
1.2×10^{-2}	HSO^{-}	$\mathrm{SO}_{4}{ }^{-2}$	8.3×10^{-13}
4.6×10^{-4}	HNO_{2}	NO_{2}^{-}	2.2×10^{-11}
4.3×10^{-7}	$\mathrm{H}_{2} \mathrm{CO}_{3}$	HCO^{-}	2.3×10^{-8}
5.6×10^{-10}	NH^{+}	NH_{3}	1.8×10^{-5}
1.3×10^{-13}	HS^{-}	S^{-2}	7.7×10^{-2}

NOTE THAT FROM THE TOP TO THE BOTTOM OF THE LIST

THE ACIDS GO FROM STRONGEST TO WEAK (best to least conductor)
THE BASES GO FROM WEAK TO STRONGEST (least to best conductor)
2. Consider a solution containing $1.0 \mathrm{M} \mathrm{CN}^{-}(\mathrm{aq}) . \quad$ Find its pH . IGNORE CATION!

	$\mathrm{CN}^{-}(\mathrm{aq})$	$+\mathrm{HOH}(\mathrm{l})$	\rightleftarrows	$\mathrm{HCN}(\mathrm{aq})$	+	$\mathrm{OH}^{-}(\mathrm{aq})$
I	1.0 M	X		---------		
R	-y	X		+y	----y	
E	$1.0-\mathrm{y}$	X		y		

$$
\begin{array}{ll}
\mathrm{Kb}=\frac{\left[\mathrm{HCN}^{[2]}\left[\mathrm{OH}^{-}\right]\right.}{\left[\mathrm{CN}^{-}\right]} & =\mathrm{Kw} / \mathrm{Ka} \\
=2.0 \times 10^{-5} \\
= & \\
= & \text { Assume that } \mathrm{y} \ll 1.0
\end{array}
$$

$\mathrm{y}^{2}=2.0 \times 10^{-5}$
$\mathrm{y}=4.5 \times 10^{-3}$ so the assumption is valid (meaning that subtracting y would NOT have changed our answer in the denominator, above)

$$
\left[\mathrm{OH}^{-}\right]=\mathrm{y}=4.5 \times 10^{-3} \quad \mathrm{pOH}=2.35(2 \text { sig figs }) \quad \mathrm{pH}=11.65(\mathrm{BASIC}!)
$$

3. Consider a solution containing $1.0 \mathrm{M} \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$. Find its pH and $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$.

IGNORE CATION!

$\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{HOH}(\mathrm{l})$	\rightleftarrows	$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$	
1.0 M	X	--------	
-y	X	+y	---y
$1.0-\mathrm{y}$	X	y	y

$$
\mathrm{Kb}=\left[\mathrm{HCH}_{3}{\mathrm{COO}]\left[\mathrm{OH}^{-}\right]}^{-} \quad=\mathrm{Kw} / \mathrm{Ka} \quad=10^{-14} / 1.8 \times 10^{-5}\right.
$$

$\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$
$=5.6 \times 10^{-10}=\quad y^{2} \quad$ Assume that $\mathrm{y} \ll 1.0$
$\mathrm{y}^{2}=5.6 \times 10^{-10}$
$\mathrm{y}=2.4 \times 10^{-5} \quad$ assumption valid
$=\left[\mathrm{OH}^{-}\right]$
$\mathrm{pOH}=4.62$ (2 sig figs)
$\mathrm{pH}=9.38$ (BASIC!)
4. Consider a 1.0 M solution with $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2.4 \times 10^{-12}$. Calculate the Kb .

So $\mathrm{pH}=11.62$ (BASIC! $)$
$\mathrm{pOH}=2.38$
$[\mathrm{OH}-]=4.2 \times 10^{-3}$
I have represented this value as " y " in the table below

	?? (aq)	+ $\mathrm{HOH}(1)$?? (aq)	$+\mathrm{OH}^{-}(\mathrm{aq})$
I	1.0 M	X	--------	------
R	-y	X	+y	+y
E	1.0-y	X	y	y
	$\mathrm{Kb}=$	$\begin{aligned} &\left(4.2 \times 10^{-3}\right)^{2} \\ & 1.0-4.2 \times 10^{-3} \\ &= 1.8 \times 10^{-5} \end{aligned}$		

If we wanted to figure out which base it was...

$$
\mathrm{Kb}=\frac{\mathrm{Kw}}{\mathrm{Ka}} \quad 1.8 \times 10^{-5}=\frac{1.0 \times 10^{-14}}{\mathrm{Ka}}
$$

$\mathrm{Ka}=5.6 \times 10^{-10}=\mathrm{NH}_{4}{ }^{+}$
So the base was NH_{3} !!!!!
5. Consider a 0.25 M solution with $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=6.3 \times 10^{-11}$. Calculate the Kb .

```
\(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-10.20}=6.3 \times 10^{-11}\)
\(\mathrm{pH}=10.20\) (BASIC!)
\(\mathrm{pOH}=3.80\) (2 sig figs)
\(\left[\mathrm{OH}^{-}\right]=1.6 \times 10^{-4}\)
    \(? ?(\mathrm{aq})+\mathrm{HOH}(\mathrm{l}) \quad \rightleftarrows \quad\) ?? \((\mathrm{aq}) \quad+\mathrm{OH}^{-}(\mathrm{aq})\)
\begin{tabular}{lllll} 
I & 0.25 M & X & -------- & ----- \\
R & -y & X & +y & +y \\
E & \(0.25-\mathrm{y}\) & X & y & y
\end{tabular}
```

Where Y represents $\left[\mathrm{OH}^{-}\right]=1.6 \times 10^{-4}$

$$
\begin{aligned}
& \mathrm{Kb}=\frac{\mathrm{y}^{2}}{0.25-\mathrm{y}} \\
& =\quad \frac{\left(1.6 \times 10^{-4}\right)^{2}}{0.25-1.6 \times 10^{-4}} \\
& =1.0 \times 10^{-7}
\end{aligned}
$$

$\mathrm{Ka} \mathrm{Kb}=\mathrm{Kw}$
If $\mathrm{Kb}=1.0 \times 10^{-7}$
Then $\mathrm{Ka}=1.0 \times 10^{-7}$
The identity of the acid with $\mathrm{Ka}=1.0 \times 10^{-7}$ is $\mathrm{HSO}_{3}{ }^{-}$
So therefore the base with $\mathrm{Kb}=1.0 \times 10^{-7}$ is $\mathrm{SO}_{3}{ }^{-2}$

HYDROLYSIS

-a reaction between an ion and water which alters the $\left[\mathrm{OH}^{-}\right]$and $\left[\mathrm{H}^{+}\right]$in the resulting solution.
example:
$\mathrm{CN}^{-}(\mathrm{aq}) \quad+\mathrm{HOH}(\mathrm{l}) \rightleftarrows \mathrm{HCN}(\mathrm{aq}) \quad+\mathrm{OH}^{-}(\mathrm{aq})$
Note: $\mathrm{CN}^{-}(\mathrm{aq})$ hydrolysis produces a basic solution
Typical anion hydrolysis:
$\mathrm{Kh}=\mathrm{Kb}=[\mathrm{HCN}]\left[\mathrm{OH}^{-}\right]$
$\left[\mathrm{CN}^{-}\right]$
example:
$\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{HOH}(1) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \quad+\mathrm{NH}_{3}(\mathrm{aq})$
Note: $\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})$ hydrolysis produces an acidic solution
Typical cation hydrolysis:
$\mathrm{Kh}=\mathrm{Ka}=\left[\mathrm{H}_{3} \underline{\mathrm{O}}^{+}\right][\mathrm{NH} 3]$
$\left[\mathrm{NH}_{4}{ }^{+}\right]$
NOT ALL IONS YYDROLYZE!!!
example:
$\mathrm{Cl}^{-}(\mathrm{aq}) \quad+\mathrm{HOH}(\mathrm{l}) \rightleftarrows \mathrm{HCl}(\mathrm{aq}) \quad+\mathrm{OH}^{-}(\mathrm{aq})$
$\mathrm{Kb} \quad=\mathrm{Kw} / \mathrm{Ka}$
$=10^{-14} /$ infinity
$=0$
$\mathrm{K} \ll 1$ therefore reactants are preferred
This hydrolysis reaction does not proceed. HCl is a strong acid and will dissociate 100%.

Anions incapable of hydrolysis:

$\mathrm{Cl}^{-}, \mathrm{HSO}_{4}^{-}, \mathrm{I}^{-}, \mathrm{Br}^{-}, \mathrm{NO}_{3}{ }^{-} . \mathrm{ClO}_{4}^{-}$

Cations incapable of hydrolysis:

$\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Li}^{+}, \mathrm{Cs}^{+}, \mathrm{Fr}^{+}, \mathrm{Rb}^{+}, \mathrm{Ca}^{+2}, \mathrm{Ba}^{+2}$

HYDROLYSIS OF SALTS:

SALT	PARENT	pH of salt	HYDROLYSIS of ions		
NaF	NaOH	strong base	basic $\mathrm{pH}>7$	Na^{+}	-NO
	HF	weak acid		F^{-}	- yes

KCl
$\mathrm{NH}_{4} \mathrm{NO}_{3}$

NH 4 IO 3
$\mathrm{NH}_{4} \mathrm{~F}$
$\mathrm{NH}_{4} \mathrm{CH}_{3} \mathrm{COO}$

SUMMARY: YYDROLYSIS OF SALTS:

1) Neither cation or anion hydrolyze: the salt solution will be neutral
2) Only the cation hydrolyzes: the solution will be acidic
3) Only the anion hydrolyzes: the solution will be basic
4) If both the cation and anion hydrolyze: the solution will be:

acidic	if $\mathrm{Ka}>\mathrm{Kb}$
neutral	if $\mathrm{Ka}=\mathrm{Kb}$
basic	if $\mathrm{Ka}<\mathrm{Kb}$

Sample Calculation:
DETERMINE THE pH of a 0.06 M NaCH 3 COO SOLUTION.

HYDROLYSIS OF SALTS:

SUMMARY: HYDROLYSIS OF SALTS:

1) Neither cation or anion hydrolyze: the salt solution will be neutral
2) Only the cation hydrolyzes: the solution will be acidic
3) Only the anion hydrolyzes: the solution will be basic
4) If both the cation and anion hydrolyze: the solution will be

acidic	if $\mathrm{Ka}>\mathrm{Kb}$
neutral	if $\mathrm{Ka}=\mathrm{Kb}$
basic	if $\mathrm{Ka}<\mathrm{Kb}$

Sample Calculation:
DETERMINE THE pH OF A $0.06 \mathrm{M} \mathrm{NaCH}_{3} \mathrm{COO}$ SOLUTION.

	$\begin{aligned} & \mathrm{HCH}_{3} \mathrm{COO} \\ & \mathrm{NaOH} \end{aligned}$	weak acid strong base		basic		Na^{+}	- NO		
				$\mathrm{CH}_{3} \mathrm{COO}^{-}$	- yes				
	$\mathrm{CH}_{3} \mathrm{COO}^{-}$	+	$\mathrm{HOH} \rightleftarrows$				$\mathrm{CH}_{3} \mathrm{COOH}$	$+\mathrm{OH}^{-}$	
I	0.06 M		XXX		---	---			
R	-y		XXX		+y	+y			
E	0.06 -y		XXX		y	y			
	$\mathrm{Kb}=\mathrm{Kw} / \mathrm{Ka}=5.6 \times 10^{-10}$								
	$5.6 \times 10^{-10}=\mathrm{y}^{2} /(0.06-y) \quad$ assume $\mathrm{y} \ll 0.06$								
	$3.4 \times 10^{-11}=\mathrm{y}^{2}$								
	$\mathrm{y}=5.8 \times 10^{-6} \mathrm{M}=\left[\mathrm{OH}^{-}\right]$								
	$\mathrm{pOH}=5.24$		$\mathrm{pH}=8.76$	Basi					

HYDROLYSIS REVIEW EXERCISE:

1 Find the pH of:
a) $0.50 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$
b) 0.50 M KOH
c) $0.50 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
d) 0.50 M HBr
e) $0.50 \mathrm{M} \mathrm{H}_{2} \mathrm{CO}_{3}$
f) 0.50 M NaCN
g) $0.50 \mathrm{M} \mathrm{NH}_{4} \mathrm{I}$
h) $0.50 \mathrm{M} \mathrm{K}_{2} \mathrm{SO}_{3}$

2 Give numerical proof to support your prediction of acidic, basic, or neutral character for the following compounds:
a) $\mathrm{NH}_{4} \mathrm{~F}$
b) $\mathrm{NH}_{4} \mathrm{HSS}_{4}$
c) $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$

3 Will HPO_{4}^{-2} behave as an acid or a base in water at RTP? Show your proof.

HINTS for the HYDROLYSIS WORKSHEET:

THIS IS A DECEIVING WORKSHEET. YOU NEED TO KNOW A LOT TO COMPLETE THIS WORKSHEET. SUGGESTION FOR SUCCESS:
Make up flash cards of these questions and on the back of the flashcard write: whether it is a strong/weak acid/base, the dissocation equation and whether you will be calculating a Ka or a Kb. Also keep track of how many significant figures you need to have throughout each question.

FRONT OF FLASHCARD:

a) Find the pH of $0.50 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$
b) Find the pH of 0.50 M KOH
c) Find the pH of $0.50 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
d) Find the pH of 0.50 M HBr
e) Find the pH of $0.50 \mathrm{M} \mathrm{H}_{2} \mathrm{CO}_{3}$
f) Find the pH of 0.50 M NaCN
g) Find the pH of $0.50 \mathrm{M} \mathrm{NH}_{4} \mathrm{I}$
h) Find the pH of $0.50 \mathrm{M} \mathrm{K}_{2} \mathrm{SO}_{3}$

BACK OF FLASHCARD:

weak acid So use Ka to solve for $[\mathrm{H}+$]
$\mathrm{C} 6 \mathrm{H} 5 \mathrm{OH} \rightleftarrows \mathrm{C} 6 \mathrm{H} 5 \mathrm{O}-+\mathrm{H}+$
strong base
therefore 100% dissoc. So no Ka or Kb needed [KOH] $=[\mathrm{OH}-]$
strong DIPROTIC acid 100\% dissoc
$[\mathrm{H}+]$ is not appreciably $>\mathrm{K} 2$
therefore a 2 stage dissoc $\boldsymbol{I S}$ necessary add $[\mathrm{H}+]_{1}+\left[\mathrm{H}^{+}\right]_{2}$ to find final $[\mathrm{H}+]$ and then pH strong monoprotic acid therefore one step calc: 100% dissoc.
weak DIprotic acid
$\left[\mathrm{H}^{+}\right]>\mathrm{K} 2$ therefore ignore second stage use Ka_{1} to solve for [$\mathrm{H}+$]
parent base NaOH : strong base so:
Na+ will not hydrolyze
parent acid HCN: weak acid so:
SINGLE HYDROYSIS: CN only the ANION solution will be basic; use Kb to solve
$\mathrm{CN}^{-}+\mathrm{HOH}<==>\mathrm{HCN}+\mathrm{OH}^{-}$
HI : strong acid parent (I- does not hydrolyze)
$\mathrm{NH}_{4} \mathrm{OH}$ or NH_{3} : weak base parent SINGLE HYDROYSIS: $\mathrm{NH}_{4}+$ only the CATION
solution will be acidic; use Ka to solve
$\mathrm{NH}_{4}{ }^{+}+\mathrm{HOH}<==>\mathrm{H}^{+}+\mathrm{NH}_{3}$
KOH : strong base base ($\mathrm{K}+$ does not hydrolyze) H2SO3: weak acid parent (you could also look at the HSO3- conj. and come to same conclusion)
SINGLE HYDROYSIS: $\mathrm{SO}_{3}{ }^{-2}$ only the ANION solution will be basic

Question 2:

DETERMINE SINGLE HYDROLYSIS (cation or anion) OR DOUBLE HYDROLYSIS (BOTH cation AND anion). Then use Ka versus Kb to determine acidic / basic character.

Question 3:

Use Ka of HPO_{4}^{-2} vs Kb of HPO_{4}^{-2} to determine if this amphiprotic ion is going to act as acid or base. Note that in question $2 \boldsymbol{b}$ you have to do something similar in addressing the fact that HS- could be an acid OR a base! And also consider the $\mathrm{NH}_{4}+$ ion acting as an acid as well. Highest K value determines it.

HYDROLYSIS REVIEW EXERCISE KEY

1 Find the pH of:
a) $0.50 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH} \quad 5.09$ or $5.10 \quad$ Acidic
b) 0.50 M KOH
13.70 Basic
c) $0.50 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
0.29
(final $[H+]=.512 \mathrm{M}$)
d) 0.50 M HBr
0.30

Acidic
e) $0.50 \mathrm{M} \mathrm{H}_{2} \mathrm{CO}_{3}$
f) 0.50 M NaCN
3.33

Acidic
g) $0.50 \mathrm{M} \mathrm{NH}_{4} \mathrm{I}$
11.50 or 11.51 Basic
h) $0.50 \mathrm{M} \mathrm{K}_{2} \mathrm{SO}_{3}$
4.77 or 4.78 Acidic
10.35

Basic

2 Give numerical proof to support your prediction of acidic, basic, or neutral character for the following compounds:
a) $\mathrm{NH}_{4} \mathrm{~F}$

Acidic
b) $\mathrm{NH}_{4} \mathrm{HS}^{2}$

Basic
c) $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$

Basic

3 Will HPO_{4}^{-2} behave as an acid or a base in water at RTP? Show your proof. Base

