Chemistry 12 UNIT 4 <u>ACIDS AND BASES</u>

PACKAGE #5

 $K_aK_b = K_w$

Proof: H₂O + H₂O \rightleftharpoons H₃O⁺ + OH⁻

Recall, at 25°C: $Kw = [H_3O^+][OH^-]$ $[H_3O^+] = [OH^-] = 10^{-7} M$ $Kw = (10^{-7}) (10^{-7}) = 10^{-14}$

Consider the dissociation of any acid:

 $HX + H_2O \rightleftharpoons H_3O^+ + X^ Ka = [H_3O^+][X^-]$ [HX]

Consider the reaction of a basic anion with water:

 $X^{-} + H_{2}O \rightleftharpoons HX + OH^{-}$ $Kb = [HX][OH^{-}]$ $[X^{-}]$

 $KaKb = [H3O^+][X^-][HX][OH^-]$ [HX] [X⁻]

KaKb = $[H_3O^+][OH^-]$ = Kw at 25°C KaKb = 10^{-14}

USE KaKb = Kw to solve for Kb given only Ka The acid and base in this equation will be conjugate acid-base pairs

example: The Ka for $NH4^+$ is 5.6 x 10⁻¹⁰. What is the Kb for NH3?

 $NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$

Kb (NH3) = <u>Kw</u> = 10^{-14} = 1.8×10^{-5} Ka (NH4⁺) 5.6 x 10⁻¹⁰

pH of solutions containing an ion which can act as an acid and an ion which can act as a base

NH₄CH₃COO (s) acidic or basic? $NH_{4}CH_{3}COO(s) \rightarrow NH_{4}^{\dagger}(aq) + CH_{3}COO^{\dagger}(aq)$ • Consider $NH_4^+(aq)$: $NH4^{+}(aq) + H2O(I) \approx NH3(aq) + H3O^{+}(aq)$ Ka (NH4⁺) = 5.6×10^{-10} • Consider CH3COO (aq): $CH_3COO^{-}(aq) + H_2O(l) \approx CH_3COOH(aq) + OH^{-}(aq)$ Kb (CH₃COO⁻) = <u>Kw</u> = 10^{-14} = 5.6 x 10⁻¹⁰ Ka (CH3COOH) 1.8 x 10⁻⁵ Since Ka = Kb the pH = 7.0 (neutral)

If
$$Ka > Kb$$
then the solution would be acidic $pH < 7$ If $Ka < Kb$ then the solution would be basic $pH > 7$

$K_aK_b = K_w$

SAMPLE CALCULATIONS

1.	Complete the follow	ving chart:			
ACID	Ka		BASE		Kb
HBr					
HSO4					
HNO	2				
H ₂ CC)3				
NH4 ⁺					
HS-					
2.	Consider a solution	_			-
	CN - (aq) + HC)H (l) ₹	HCN (aq)	+	OH ⁻ (aq)
3.	Consider a solution	containing 1.0	M CH ₃ COO-	(aq).	Find its pH and [H ₃ O ⁺].
	CH3COO ⁻ (aq) + H	OH (l) ≓	HCH3COO(ad	q) + OH-	(aq)
4.	Consider a 1.0 M so	lution with [H	$[3O^+] = 2.4 \text{ x } 1$	0 ⁻¹² . Calo	culate the Kb.
	?? (aq) + HOH (l)	₹ ?? (aq)+ OH- (aq))	
5.	Consider a 0.25 M s	solution with []	$H_{3}O^{+}] = 6.3 \text{ x}$	10 ⁻¹¹ . Ca	lculate the Kb.
	?? (aq) + HOH (l)	₹ ?? (aq) + C)H- (aq)	

$K_aK_b = K_w$

SAMPLE CALCULATIONS

1. Complete the following chart:

Ka	ACID	BASE	Kb
~infinity	HBr	Br-	0
1.2 x 10 ⁻²	HSO4 ⁻	SO4 ⁻²	8.3 × 10 ⁻¹³
4.6 x 10 ⁻⁴	HNO ₂	NO ₂ -	2.2 × 10 ⁻¹¹
4.3 x 10 ⁻⁷	H ₂ CO ₃	HCO3 ⁻	2.3 × 10 ⁻⁸
5.6 x 10 ⁻¹⁰	NH4 ⁺	NH3	1.8 × 10 ⁻⁵
1.3 x 10-13	HS-	S-2	7.7 × 10 ⁻²

NOTE THAT FROM THE TOP TO THE BOTTOM OF THE LIST

THE ACIDS GO FROM STRONGEST TO WEAK (best to least conductor) THE BASES GO FROM WEAK TO STRONGEST (least to best conductor)

2.	Consider a solution containing 1.0 M CN ⁻ (aq).	Find its pH.	

IGNORE CATION! $CN^{-}(aq) + HOH(l) \rightleftharpoons HCN(aq) + OH^{-}(aq)$ Ι 1.0 M X X +y y R +y-y Х 1.**0-**y E V $Kb = [HCN][OH^{-}] = Kw/Ka = 10^{-14} / 4.9 \times 10^{-10}$ [CN⁻] $= 2.0 \times 10^{-5}$ Assume that y <<1.0 = <u>y</u>²____ 1.0-y $v^2 = 2.0 \times 10^{-5}$

 $y = 4.5 \times 10^{-3}$ so the assumption is valid (meaning that subtracting y would NOT have changed our answer in the denominator, above)

[OH⁻] = y = 4.5 x 10⁻³ pOH = 2.35 (2 sig figs) pH = 11.65 (BASIC!)

Find its pH and $[H_3O^+]$. 3. Consider a solution containing 1.0 M CH₃COO⁻(aq). **IGNORE CATION!** $CH_3COO^{-}(aq) + HOH(l)$ \rightleftharpoons CH₃COOH (aq) + OH⁻ (aq) 1.0 M Х Ι _____ ____ Х R -y +y +y1.0-y X E y y $Kb = [HCH_3COO][OH^-] = Kw/Ka = 10^{-14} / 1.8 \times 10^{-5}$ [CH3COO⁻] $= 5.6 \times 10^{-10} =$ <u>y</u>²____ 1.0-y Assume that $y \ll 1.0$ $y^2 = 5.6 \times 10^{-10}$ $y = 2.4 \times 10^{-5}$ assumption valid = [OH-] pOH = 4.62 (2 sig figs) pH = 9.38 (BASIC!)

4. Consider a 1.0 M solution with $[H_3O^+] = 2.4 \times 10^{-12}$. Calculate the Kb.

So pH = 11.62 (BASIC!) pOH = 2.38 $[OH-] = 4.2 \times 10^{-3}$ I have represented this value as "y" in the table below

	?? (aq) +	HOH (l) 🗧	≠ ?? (aq)	+ OH ⁻ (aq)
Ι	1.0 M	Х		
R	-у	Х	+y	+y
E	1.0 - y	X	У	У
		$\frac{2 \times 10^{-3})^2}{-4.2 \times 10^{-3}}$.8 x 10 ⁻⁵		

If we wanted to figure out which base it was... $Kb = \frac{Kw}{Ka} \qquad 1.8 \times 10^{-5} = \frac{1.0 \times 10^{-14}}{Ka}$

> $Ka = 5.6 \times 10^{-10} = NH_4^+$ So the base was NH₃ !!!!!

5. Consider a 0.25 M solution with $[H_3O^+] = 6.3 \times 10^{-11}$. Calculate the Kb.

 $[H_3O^+] = 10^{-10.20} = 6.3 \times 10^{-11}$ pH = 10.20 (BASIC!) pOH = 3.80 (2 sig figs) $[OH^{-}] = 1.6 \times 10^{-4}$?? (aq) + HOH (l) \rightleftharpoons ?? (aq) + OH⁻ (aq) Ι 0.25 M Χ R Χ +y y +y -y 0.25-y E Χ y

Where Y represents $[OH^-] = 1.6 \times 10^{-4}$

Kb =
$$y^2$$

 $0.25-y$
= $(1.6 \times 10^{-4})^2$
 $0.25 - 1.6 \times 10^{-4}$
= 1.0×10^{-7}

Ka Kb = Kw

If Kb = 1.0×10^{-7}

Then Ka = 1.0×10^{-7}

The identity of the acid with $Ka = 1.0 \times 10^{-7}$ is HSO₃⁻

So therefore the base with $Kb = 1.0 \times 10^{-7}$ is SO_3^{-2}

HYDROLYSIS

-a reaction between an ion and water which alters the [OH⁻] and [H⁺] in the resulting solution.

example:

 $CN^{-}(aq) + HOH(l) \rightleftharpoons HCN(aq) + OH^{-}(aq)$

Note: CN- (aq) hydrolysis produces a basic solution

Typical anion hydrolysis: Kh = Kb = <u>[HCN][OH-]</u> [CN-]

example:

 $NH4^+(aq) + HOH(l) \rightleftharpoons H3O^+(aq) + NH3(aq)$

Note: NH4⁺ (aq) hydrolysis produces an acidic solution

Typical cation hydrolysis: $Kh = Ka = [\underline{H3O^+}][\underline{NH3}]$ $[\underline{NH4^+}]$

NOT ALL IONS HYDROLYZE!!!

example: $Cl^{-}(aq) + HOH(l) \rightleftharpoons HCl(aq) + OH^{-}(aq)$ Kb = Kw / Ka $= 10^{-14} / infinity$ = 0

K <<1 therefore reactants are preferred

This hydrolysis reaction does not proceed. HCl is a strong acid and will dissociate 100%.

Anions incapable of hydrolysis:

Cl-, HSO4-, I-, Br-, NO3-. ClO4-

Cations incapable of hydrolysis:

Na⁺, K⁺, Li⁺, Cs⁺, Fr⁺, Rb⁺, Ca⁺², Ba⁺²

HYDROLYSIS OF SALTS:

SALT	PARENT		pH of salt	HYDROLYSIS of ions
NaF	NaOH HF	strong base weak acid	basic pH >7	Na ⁺ - NO F ⁻ - yes
KCl				
NH4NO3				
NH4IO3				
NH4F				
NH4CH3COC)			

SUMMARY: HYDROLYSIS OF SALTS:

1) 2) 3)	Neither cation or anion hydrolyze: Only the cation hydrolyzes: Only the anion hydrolyzes:	the sol	t solution will ution will be a ution will be b	cidic
4)	If both the cation and anion hydroly.	ze:	<i>the solution</i> wacidic neutral basic	will be: if Ka > Kb if Ka = Kb if Ka < Kb

Sample Calculation:

DETERMINE THE pH of a 0.06 M NaCH₃COO SOLUTION.

HYDROLYSIS OF SALTS:

SALT	PARENT		pH of salt	HYDROLYSIS of ions
NaF	NaOH HF	strong base weak acid	basic pH>7	Na ⁺ - NO F ⁻ - yes
KCl	HCl KOH	strong acid strong base	neutral $pH = 7$	K ⁺ - NO Cl ⁻ - NO
NH4NO3	HNO3 NH4OH	strong acid weak base	acidic pH < 7	NH4 ⁺ - yes NO3 ⁻ - NO
NH4IO3	HIO3 NH4OH	weak acid weak base	**acidic**	NH4 ⁺ - yes IO3 ⁻ - yes
	This Bronstern NH4 $^+$ +	HOH \rightleftharpoons be OK with this	rium equation can also l	
	-	HOH \rightleftharpoons Ka = 5.9 x 10 ⁻¹⁴	HIO ₃ + OH-	
	Ka > Kb **Therefore	Acidic!!!!!!!! *	*	
NH4F		weak acid weak base	**acidic**	NH4 ⁺ - yes F ⁻ - yes
	NH4 $^+$ + Ka = 5.6 x 1	HOH <i>स</i> 0 ⁻¹⁰	$H_{3}O^{+} + NH_{3}$	
	F - + Kb = Kw / k	HOH \rightleftharpoons Ka = 2.8 x 10 ⁻¹¹	HF + OH-	
	Ka > Kh			

Ka > Kb **Therefore Acidic!!!!!!! **

SALT	PARENT	pH of salt	HYDROLYSIS of ions
NH4CH3COO	HCH3COO weak acid NH4OH weak base	**neutral**	NH4 ⁺ - yes CH3COO ⁻ - yes
	NH4 ⁺ + HOH \rightleftharpoons H3O ⁻ Ka = 5.6 x 10 ⁻¹⁰	+ + NH3	
	$CH_{3}COO^{-} + HOH \rightleftharpoons$ Kb = Kw / Ka = 5.6 x 10 ⁻¹⁰	CH3COOH	+ OH-
	Ka = Kb **Therefore Neutral!!!!!!! **		
SUMMARY:	HYDROLYSIS OF SALTS:		

1)	Neither cation or anion hydrolyze:	the salt	solution will	be neutral
2)	Only the cation hydrolyzes:	the solu	ution will be a	cidic
3)	Only the anion hydrolyzes:	the solu	ution will be b	asic
4)	If both the cation and anion hydroly.		the solution w acidic neutral basic	vill be if Ka > Kb if Ka = Kb if Ka < Kb

Sample Calculation: DETERMINE THE pH OF A 0.06 M NaCH3COO SOLUTION.

	HCH3COO NaOH	weak acid strong base	basic		Na ⁺ CH3COO ⁻	- NO - yes
I R E	$5.6 \times 10^{-10} =$	+ HOH XXX XXX XXX $a = 5.6 \times 10^{-10}$ $y^2 / (0.06-y)$		CH3COOH +y y	+ OH- +y y	
	$3.4 \ge 10^{-11} =$ y = 5.8 \x 10^{-6} pOH = 5.24	2 ·	3.76 Basic!	!!		

HYDROLYSIS REVIEW EXERCISE:

1 Find the pH of:

- a) 0.50 M C_6H_5OH
- b) 0.50 M KOH
- c) 0.50 M H₂SO₄
- d) 0.50 M HBr
- e) 0.50 M H₂CO₃
- f) 0.50 M NaCN
- g) 0.50 M NH₄I
- h) 0.50 M K₂SO₃
- 2 Give numerical proof to support your prediction of acidic, basic, or neutral character for the following compounds:
 - a) NH₄F
 - b) NH₄HS
 - c) $(NH_4)_3PO_4$
- Will HPO₄⁻² behave as an acid or a base in water at RTP? Show your proof.

HINTS for the HYDROLYSIS WORKSHEET:

THIS IS A DECEIVING WORKSHEET. YOU NEED TO KNOW A LOT TO COMPLETE THIS WORKSHEET. <u>SUGGESTION FOR SUCCESS</u>:

Make up flash cards of these questions and on the back of the flashcard write: whether it is a *strong/weak acid/base,* the *dissocation equation* and whether you will be *calculating a Ka or a Kb*. Also keep track of how many significant figures you need to have throughout each question.

	NT OF FLASHCARD:	BACK OF FLASHCARD:
a)	Find the pH of 0.50 M C_6H_5OH	weak acid So use Ka to solve for [H+]
		C6H5OH \rightleftharpoons C6H5O- + H+
b)	Find the pH of 0.50 M KOH	strong base therefore 100% dissoc. So no Ka or Kb needed [KOH] = [OH-]
c)	Find the pH of 0.50 M H_2SO_4	strong DIPROTIC acid 100% dissoc [H+] is not appreciably >K2 therefore a 2 stage dissoc <i>IS necessary</i> add [H+] ₁ + [H+] ₂ to find final [H+] and then pH
d)	Find the pH of 0.50 M HBr	strong monoprotic acid therefore one step calc: 100% dissoc.
e)	Find the pH of 0.50 M H ₂ CO ₃	weak DIprotic acid [H+]> K2 therefore ignore second stage use Ka ₁ to solve for [H+]
f)	Find the pH of 0.50 M NaCN	parent base NaOH: strong base so: Na+ will not hydrolyze parent acid HCN: weak acid so: <u>SINGLE HYDROYSIS: CN only the ANION</u> solution will be basic; use Kb to solve CN ⁺ + HOH <==> HCN + OH ⁻
g)	Find the pH of 0.50 M NH ₄ I	HI: strong acid parent (I- does not hydrolyze) $NH_4OH \text{ or } NH_3$: weak base parent <u>SINGLE HYDROYSIS: NH_4+ only the CATION</u> solution will be acidic; use Ka to solve $NH_4^+ + HOH <==>H^+ + NH_3$
h)	Find the pH of 0.50 M K ₂ SO ₃	KOH: strong base base (K+ does not hydrolyze) H2SO3: weak acid parent (you could also look at the HSO3- conj. and come to same conclusion) <u>SINGLE HYDROYSIS: SO3⁻² only the ANION</u> solution will be basic

Question 2:

DETERMINE SINGLE HYDROLYSIS (cation or anion) OR DOUBLE HYDROLYSIS (BOTH cation AND anion). Then use Ka versus Kb to determine acidic / basic character. *Question 3:*

Use Ka of HPO_4^{-2} vs Kb of HPO_4^{-2} to determine if this amphiprotic ion is going to act as acid or base. *Note that in question 2b* you have to do something similar in addressing the fact that HS- could be an acid OR a base! And also consider the NH₄+ ion acting as an acid as well. Highest K value determines it.

HYDROLYSIS REVIEW EXERCISE **KEY**

1 Find the pH of:

a)	0.50 M C₀H₅OH	5.09 or 5.10	Acidic
b)	0.50 M KOH	13.70	Basic
c)	0.50 M H2SO4	0.29	Acidic
		(final [H+] = .512 M)	
d)	0.50 M HBr	0.30	Acidic
e)	0.50 M H ₂ CO ₃	3.33	Acidic
f)	0.50 M NaCN	11.50 or 11.51	Basic
g)	0.50 M NH4I	4.77 or 4.78	Acidic
h)	0.50 M K2SO3	10.35	Basic

2 Give numerical proof to support your prediction of acidic, basic, or neutral character for the following compounds:

a)	NH₄F	Acidic
b)	NH₄HS	Basic
c)	(NH ₄) ₃ PO ₄	Basic

Will HPO4⁻² behave as an acid or a base in water at RTP? Show your proof.
 Base